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Note to the reader 29 

GBS review reports are not completely independent from each other. Readers of this report are advised to 30 

first read the report dedicated to Core concepts of the GBS (CDC Biodiversité 2020a) to ensure a good 31 

overall comprehension of the tool and the present report. 32 

The following colour code is used in the report to highlight: 33 

- Assumptions 34 

- Important sections 35 

- Developments of the GBS planned in the future 36 

The GBS review reports are aimed at technical experts looking for an in-depth understanding of the tool 37 

and contribute to the transparency that CDC Biodiversité considers key in the development of such a tool. 38 

They focus on technical assumptions and principles. Readers looking for a short and easy-to-understand 39 

explanation of the GBS or on an overview of existing metrics and tools should instead read the general 40 

audience reports published by CDC Biodiversité (CDC Biodiversité 2017; CDC Biodiversité, ASN Bank, and 41 

ACTIAM 2018; CDC Biodiversité 2019b). 42 

[ERRATUM]: Following the review, some examples and figures have been updated to reflect the 43 

modifications in the tool that had been made during the review. Some slight corrections have also been 44 

made, ie. double counting in the impacts of Food2 and Mining2 in the test portfolio 45 

1 Context 46 

1.1 Objective and overview of this report 47 

This report presents the Input-Output (IO) modelling procedure used in GBS. The use of IO approach in the 48 

tool is two-fold 49 

1. The IO framework allows to run default corporate and portfolio assessments based on limited 50 
activity data, namely the turnover by industry and country; 51 
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2. The IO model allows to integrate the value-chain impacts of activities based either on default or 52 
refined data (only upstream impacts are assessed yet). 53 

The report is organized as follows: the link between the main sections of the report and the GBS framework 54 

is illustrated on Figure 1. Section 1.2 presents the basic IO framework and the IO model EXIOBASE used 55 

in the GBS. Section 2 describes how default assessments are undertaken, notably distinguishing the 56 

computation of characterisation factors (2.1) and the computation of default impacts based on activity data 57 

(2.2). Section 3 describes how default assessments can be improved based on refined company data 58 

whether monetary (3.1) or related to inventories and pressures (3.2). 59 

 60 

Figure 1: Link between the content of this report and the GBS framework 61 

 62 

1.2 Basics on input-output analysis 63 
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A THE INPUT-OUTPUT FRAMEWORK 64 

Input-output (IO) models are constructed from observed economic data and provide information about the 65 

activity of industries that both produce and consume goods. Those interindustry relationships are derived 66 

from interindustry transaction tables in which the rows describe the composition of inputs required by a 67 

particular industry to produce its output. The data often concern industries in a specific geographic region 68 

(nation, state, county, etc.) and consists in monetary flows. Additional columns represent final demand, i.e. 69 

the sales to final markets (consumers, government, exports), and additional lines deal with value added, i.e. 70 

account for non-industrial production inputs (labor, capital, etc.)1. 71 

An IO model is a system of linear equations where the total output of an industry is distributed through sales 72 

to other sectors and to final demand, that is 73 

𝑥𝑖 =  𝑧𝑖1 + ⋯ + 𝑧𝑖𝑗 + ⋯ +  𝑧𝑖𝑛 + 𝑓𝑖 = ∑ 𝑧𝑖𝑗
𝑛
𝑗=1 + 𝑓𝑖, 74 

where 75 

• 𝑥𝑖 is the monetary value of the total output of sector 𝑖 during the year; 76 

• 𝑧𝑖𝑗 is the demand of sector 𝑗 for inputs from sector 𝑖 during the year; 77 

• 𝑛 is the number of industries in the economy; 78 

• 𝑓𝑖 is the total final demand for sector 𝑖’s production during the year. 79 

Such an equation exists for the 𝑛 industries of the economy, so that the set of 𝑛 linear equations with 𝑛 80 

unknowns can be represented using the matrix representation 81 

x = Zi + f 82 

with x =  [

𝑥1

⋮
𝑥𝑛

], Z =  [

𝑧11 ⋯ 𝑧1𝑛

⋮ ⋱ ⋮
𝑧𝑛1 ⋯ 𝑧𝑛𝑛

], f =  [
𝑓1

⋮
𝑓𝑛

] and i is the summation vector (column vector of ones with size 83 

𝑛). 84 

The interindustry flows provide information on the amount of each input required to produce the output, i.e. 85 

the production functions. The ratio of input required over the total output (in $/$) is called the technical 86 

coefficient and is computed as 87 

𝑎𝑖𝑗 =  
𝑧𝑖𝑗

𝑥𝑗

=  
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑖 𝑏𝑜𝑢𝑔ℎ𝑡 𝑏𝑦 𝑠𝑒𝑐𝑡𝑜𝑟 𝑗

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑐𝑡𝑜𝑟 𝑗
. 88 

The linear equations can thus be re-written as 89 

𝑥𝑖 =  𝑎𝑖1𝑥1 + ⋯ + 𝑎𝑖𝑗𝑥𝑗 + ⋯ + 𝑎𝑖𝑛𝑥𝑛 + 𝑓𝑖 = ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 + 𝑓𝑖. 90 

 

 

1 Within a country, the sum of the value added is equal to the Gross Domestic Product (GDP). 
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Denoting A the matrix of technical coefficients we thus have 91 

x = Ax + f, 92 

x = (I - A)-1f. 93 

The matrix (I - A)-1 is called the Leontief inverse matrix. Notice that the Leontief inverse matrix can be seen 94 

as a power series approximation 95 

(I - A)-1 = I + A + A² + A3 + … + An + … = 𝐥𝐢𝐦
𝒏→+∞

∑ 𝑨𝒌𝒏
𝒌=𝟎 . 96 

The Leontief inverse matrix thus represents all the value chain interrelations required to produce the output. 97 

B MULTI-REGIONAL AND ENVIRONMENTALLY EXTENDED 98 

INPUT-OUTPUT MODELS 99 

In multi-regional input-output (MRIO) models, data are spatialised and flows between geographical regions 100 

are detailed. Hence MRIO models prove useful to analyse global supply-chains. They are particularly suited 101 

to the analysis of global supply-chain-related environmental pressures. Indeed, it has been extended to 102 

account for pollution generation and abatement associated to economic activity since the late 1960s. 103 

Environmental – and social – “extensions” allow the comprehensive examination of a wide variety of factors 104 

– employment, pollution, water, capital expenditures, etc. – associated to economic activities and policies. 105 

Environmental extension of MRIO models can be done in several ways, either by augmenting the technical 106 

coefficient matrix with additional rows and/or columns reflecting environmental impacts or by including 107 

additional “ecosystem” sectors where flows between these sectors and economic sectors are recorded 108 

along the lines. Whichever method is used, EEMRIO models often mix physical and monetary units as 109 

pollutants emissions and volumes of raw materials sourced are linked to the monetary value of production. 110 

Environmentally extended multi-regional input-output (EEMRIO) models are used today to compute climate, 111 

water and material resources footprints of production and consumption at national or regional levels. In 112 

short, while MRIO models provide a mathematical representation of the flows of goods and services 113 

between industries all over the world by documenting the monetary transactions involved in production and 114 

consumption, EEMRIO models are appropriate for analysing the supply-chain-related environmental 115 

pressures due to production and consumption activities. Indeed in EEMRIO models, companies’ purchases, 116 

commodity extraction and emissions are spatially explicit, so that complex international value chains can be 117 

analysed. 118 

EEMRIO models provide data on material, water and land-use consumptions and emissions of substances 119 

related to the economic activities of a detailed list of industries all over the world (the “Environmental 120 

extensions” in Figure 2). They are recognised as key frameworks to provide a comprehensive description 121 

of the global economy and analyse its effect on the environment and are thus interesting tools to support 122 

biodiversity footprint methodologies. In fact, (Wilting and van Oorschot 2017a; Wilting et al. 2017) use such 123 

a framework to quantify biodiversity losses due to, respectively, consumption and production activities in 124 
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the Netherlands. EEMRIO models display several advantages in the development of the GBS compared to, 125 

for instance, the life-cycle analysis framework: 126 

1. They allow the evaluation of companies based solely on the distribution of their turnover across region 127 

and industry; 128 

2. Conceptually, all industries of all countries can be evaluated simultaneously; 129 

3. They are self-contained and guarantee internal consistency between and within monetary as well as 130 

physical amounts.  131 

Since these models are based on a sectoral approach, they face limits when analysing companies within 132 

the same industry. Indeed, in an EEMRIO framework, two companies operating in the same industries and 133 

the same regions cannot be distinguished otherwise than by the monetary value of their production. Thus, 134 

three main applications of EEMRIO tools in the GBS are envisaged: 135 

• Providing benchmark industry footprints at the national level; 136 

• Calculating a generic corporate footprint including value chain impacts for companies with limited 137 

information. The footprint obtained would be considered as a “default footprint” with room for 138 

improvement if the company choses to disclose more specific data. As explained below, computing the 139 

Scope 1, Scope 2 and Scope 3 footprint of a company using EEMRIO data only requires the knowledge 140 

of the breakdown of its activity by country and industry. The main industry and the location of the 141 

headquarter of each company is usually known. The distribution of turnover by country and industry 142 

can sometimes be deduced from the company’s annual reports but is not always available; 143 

• Calculating the footprint of financial assets. The footprint of the companies financed is first assessed 144 

(“dimensioning” of the impact), then attribution rules specific to the asset class are applied to evaluate 145 

the impact which can be attributed to the funding source (“attribution” of the impact). The monetary 146 

framework of EEMRIO proves especially appropriate in this context. 147 

 148 
Figure 2: Components of an environmentally extended multi-regional input-output model 149 
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C THE EXIOBASE MODEL 150 

The EEMRIO model used in the GBS is EXIOBASE version 3.4 (Stadler et al. 2018), noted “EXIOBASE 3” in 151 

the rest of the report. It is a time series of EEMRIO tables ranging from 1995 to 2011 for 49 regions (44 152 

countries and 5 rest of the world regions) and 163 industries. The list of regions and industries is reproduced 153 

in (CDC Biodiversité 2019a). Though the times series provide information for analysing the dynamics of 154 

environmental pressures of economic activities over time, only the data for year 2011 are used in the GBS. 155 

Data related to environmental impacts are grouped into 4 accounts: 156 

- The emission account provides quantitative data on industry-specific emissions of 27 pollutants, including 157 

GHGs, nitrogen and phosphate;  158 

- The water account documents water consumption (blue and green) and water withdrawal of agricultural, 159 

manufacturing and energy production activities; 160 

- The material account documents the extraction of 222 raw materials, including biomass items (data 161 

retrieved from FAOSTAT), metal ores and minerals (data retrieved from the British Geological Survey (BGS 162 

2014), the US Geological Survey (USGS 2014) and the World Mining Data (Reichl, Schatz, and Zsak 2014)) 163 

and fossil fuels (data retrieved from the International Energy Agency (IEA 2014a; 2014b)); 164 

- The land account lists the area consumption related to agricultural and settlement activities for 15 types 165 

of land use. 166 

The data can be downloaded for free and are available in two formats. Industry by industry tables describe 167 

interindustry monetary flows, while product by product tables describe the relationships between products 168 

directly. Since we are interested by the sectoral approach, we downloaded the industry by industry IO tables 169 

for the year 2011. The folder contains (main files): 170 

• Y.txt: final demand, i.e. sales of the 163 industries of the 49 regions to the 7 types of final 171 

demand in each region 172 

• A.txt: the matrix of technical coefficients 173 

• F.txt: the environmental accounts for all extensions (energy, emissions, water, materials, land) 174 

related to the total production (and not the production per million euros) of each industry 175 

• unit.txt: file describing the units of all figures in the data 176 

 177 

2 Default assessments 178 

2.1 Characterisation factors 179 
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A OVERALL APPROACH 180 

Conceptually we define 181 

𝑖𝑚𝑝𝑎𝑐𝑡𝑗 = 𝑖(𝑀 ∘ 𝐷)(𝐼 − 𝐴)−1𝑥𝑗, 182 

where 183 

• 𝑖𝑚𝑝𝑎𝑐𝑡𝑗 is the biodiversity footprint of sector 𝑗 in MSA.km² 184 

• 𝑖 is a (1 × 𝑡) vector of ones used to sum up the biodiversity losses caused by individual 185 

environmental pressure 186 

o 𝑡 is the number of pressures considered 187 

• 𝑀 is the (𝑡 × 𝑟. 𝑠) matrix of biodiversity loss factors, 𝑚𝑖,𝑗 is a (1 × 𝑠) row vector of biodiversity 188 

loss factors of direct environmental pressure 𝑖 in region 𝑗 (depicting the biodiversity losses per 189 

unit of environmental pressure) 190 

o 𝑡 is the number of pressures considered 191 

o 𝑟 is the number of regions in the IO model 192 

o 𝑠 is the number of industries in the IO model 193 

• 𝐷 is the (𝑡 × 𝑟. 𝑠) matrix of direct environmental pressures, 𝑑𝑖,𝑗 is a (1 × 𝑠) row vector of 194 

direct environmental pressure intensities of pressure 𝑖 in region 𝑗 (depicting the direct 195 

environmental pressures of one unit of production for all sectors) 196 

• (𝐼 − 𝐴)−1 is the Leontief inverse matrix (cf above) 197 

• 𝑥𝑗 is the (𝑟. 𝑠 × 1) vector of production with zeros for all sectors except sector 𝑗 198 

• Operation ∘ is the element-wise multiplication of two matrices (Hadamard product) 199 

The main components of the equation are the M and D matrices and the Leontief inverse. The Leontief 200 

inverse is computed based on the matrix of technical coefficients, as explained in Section 1.2A. Since the 201 

L matrix is not part of the files provided for download on EXIOBASE website, the researchers of the Dutch 202 

Institute of Environmental Sciences (CML, EXIOBASE developers) kindly shared the MATLAB code required 203 

to compute it based on the A matrix (file A.txt). The main lines of the code are reproduced below. 204 

MATLAB CODE TO COMPUTE LEONTIEF INVERSE MATRIX – SOURCE: ARJAN DE KONING, CML 205 

 206 

 207 

The computation of D, M and D∘M matrices is detailed in the other subsections. Before coming to them, we 208 

describe the overall IO approach based on the theoretical concepts introduced above. 209 
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 210 

Figure 3: Detailed GBS IO approach 211 

The overall approach is illustrated by Figure 3, including the required data and use of the various 212 

components of EXIOBASE IO model and the D and M matrices introduced above. The first step of the 213 

analysis is the combination of company or portfolio data with the MRIO model EXIOBASE 3 to translate 214 

them into production and purchases per industry and region, in order to assess the impact of the whole 215 

upstream value chain. The second step of the default assessment is to link the production of EUR 1 million 216 

of any industry and any region to direct (Scope 1) biodiversity impacts. This analysis can be broken down 217 

in two sub-steps: 218 

1. The assessment of the inventory data of the production of EUR 1 million worth of output 219 

of any industry in any region.  220 

➢ This component gives information on the contributions of the activity to drivers of biodiversity loss, 221 
mostly the emission of GHGs and the consumption of raw materials and water. It is calculated based on 222 
the environmental extensions of the EEMRIO model EXIOBASE 3. These “direct environmental 223 
pressures” include GHG emissions, water and material consumptions, among others. They are gathered 224 
in what we call the “D matrices”, following Wilting & van Oorschot (2017). In the life-cycle analysis world, 225 
they would be called “inventory data”, as in Figure 1 226 

2. The assessment of the “biodiversity impacts” of the drivers.  227 
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➢ This component gives information on the loss of biodiversity caused per unit of driver (kg CO2-eq, 228 
ton of raw material) in MSA.km². We call it the “M matrices”, following Wilting & van Oorschot (2017). 229 
Biodiversity impact factors spatially explicit and calculated based on the combination of the GLOBIO 230 
model and several commodity-specific tools developed within the GBS (e.g. the “Crops” CommoTool).  231 

The assessment of environmental pressures and biodiversity impacts are  conducted simultaneously for all 232 

industries and regions thanks to the dedicated D and M matrices.  233 

The result is the Scope 1 and upstream supply chain biodiversity impacts of the company or portfolio 234 

studied. Downstream impacts, notably impacts related to final demand (e.g. consumers, public 235 

administrations) are not assessed yet.  236 

The default assessment can be used at various levels of the GBS methodology, either for default corporate 237 

assessments or in refined assessments when a company directly provides financial data about its purchases 238 

(see Figure 1. The IO framework also enables the distinction of the various tiers2 of the supply chain (direct 239 

suppliers, suppliers higher in the value chain).  240 

B D MATRICES 241 

D matrices depict the contribution of economic activities to the pressures on biodiversity, e.g. GHG 242 

emissions and raw material consumption per million euros of output. They document direct environmental 243 

pressure factors linking the production of EUR 1 million worth of output of each {region; industry} to the 244 

related emissions (GHGs, pollutants, etc.) and extractions (raw materials, water, etc.). These factors are 245 

thus quality tier 2 factors for raw materials and data quality tier 1 for GHGs. EXIOBASE data provide the 246 

total amounts for each account (emissions, materials, etc.) per {region; industry}, e.g. the total CO2 247 

emissions due to the production of the French industry “Pigs farming” for the year 2011. A prerequisite for 248 

creating the D matrices is thus the computation of the total production of each industry in each region. The 249 

total amounts of emissions and materials are then divided by the total monetary production per {region; 250 

industry} to get the amount per million euros.  251 

Following the IO approach, the total production of each {region; industry} can be computed based on the 252 

vector of total final demand and the Leontief inverse as: x = L.f with the following R code: 253 

COMPUTING TOTAL PRODUCTION 254 
### Load data and keep only the numeric data from final demand 255 
  Y <- read.table("Path\Y.txt", header = FALSE, sep = "\t", stringsAsFactors = FALSE) 256 
  final_demand <- Y[-c(1:3),-c(1,2)] 257 
### Compute total production of each industry per region 258 
  # 1) Convert data into matrices 259 

 

 

2 "Tier" here refers to supplier tier (tier 1 are direct suppliers, tier 2 are the direct suppliers of a company’s tier 1 suppliers, 

etc.). This is a totally different concept from the “data quality tiers” introduced in the Introduction document (CDC 

Biodiversité 2020a). 
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  # [...] 260 
  # 2) Compute the vector of total final demand 261 
  # row vector with total final demand (all categories) per region and industry 262 
  total_fd <- as.vector(apply(t(final_demand_matrix), 2, sum))  263 
                                                                 264 
  # 3) x = L.f 265 
  # L_inverse_matrix_integer = L * 10^6 to reduce the size of the database so need to 266 
divide   267 
  by 10^6 268 
  total_production <- ((GBStoolbox::L_inverse_matrix_integer) / 10^6) %*% total_fd 269 

2.1.B.1 Climate change 270 

Because 1) GHG emission data are computed directly per million euros based on EXIOBASE emissions 271 

account and 2) an impact factor in MSA.km²/kgCO2-eq can be computed based on GLOBIO data (see 272 

Section 0),  the impact due to climate change is computed using directly the pressure-impact relationship. 273 

The same kind of reasoning is true also for hydrological disturbance since the impact factors are expressed 274 

per million of cubic meters withdrawn or consumed (see Section 2.1.C.3 and (CDC Biodiversité 2020c)). 275 

On the contrary, for the other terrestrial and aquatic pressures the impact factors are computed per ton of 276 

material extracted in the CommoTools. Consequently, the D matrices related to these pressures should 277 

document tons of materials per million euros of production.  278 

The D matrix related to climate change (noted DCC) provides the amount of GHG emissions related to the 279 

production of EUR 1 million of each {region; industry} in kg CO2-eq/mEUR. It is computed based on the 280 

emission account which documents the total emissions of several substances of each industry. The 281 

computation steps are 282 

1. Compute the emission account per million euros for each substance 283 

2. Select the GHGs among the substances listed 284 

3. Convert the quantities emitted into kg CO2-eq using their global warming potentials 285 

4. Sum the emissions over all gases per {region; industry} 286 

We consider emissions of the six gases covered by the Kyoto Protocol, i.e. carbon dioxide (CO2), fossil and 287 

biogenic methane (CH4), nitrous oxide (N2O), sulphur hexafluoride (SF6), hydrofluorocarbons (HFCs) and 288 

perfluorocarbons (PFCs). GHG emissions are expressed in CO2-equivalents using Global Warming 289 

Potentials (GWPs) taken from the GHG Protocol (Table 1). For the GWP, we consider a time horizon of 100 290 

years in the calculations, consistent with the IPCC (Stocker 2014). Since emissions of HFCs and PFCs are 291 

already given in kg CO2-eq in EXIOBASE, no GWP is used. 292 

Table 1: Global Warming Potential of the main GHGs for a time horizon of 100 years, source: (Stocker 2014) 293 

Greenhouse gas GWP (kg CO2-eq/kg) for 100 years 

CO2 1 

CH4 28 

N2O 265 

SF6 23 500 
 294 
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EXIOBASE environmental extension distinguishes emissions due to combustion from emissions related to 295 

non-combustion sources. Both types of emissions are kept separated in the D matrix. Indeed, both types of 296 

emissions are used to compute the climate related impact, but only combustion related emissions are 297 

considered to compute that of Scope 2 (see Section 2.1.E). 298 

COMPUTING D_CC – MAIN STEPS 299 
# 1/ Get GHG emissions and convert GHG emissions into kg CO2 eq. 300 
 # Step 1: EE_data_emissions: environmental extension emissions account 301 
  GHG_emissions <- EE_data_emissions %>% 302 
    # Step 2: keep only lines concerning GHGs  303 
    filter(str_detect(Item,"CO2|CH4|N2O|SF6|HFC|PFC")) %>%  304 
    # extract the name of the GHG (3 first characters in emission name) 305 
    mutate(GHG = substr(Item, 1, 3)) %>%  306 
    right_join(GHG, by = "GHG") %>% # merge with GHG database 307 
    select(-GHG_Name, -Comment, -GHG_category) %>% # drop unwanted columns 308 
    # Step 3: convert into kgCO2eq 309 
    mutate(Emissions_kg_CO2_eq = Total_quantity * Coefficient_100) %>% #  310 
    select(-Coefficient_100) %>% # drop Coefficient variable 311 
    arrange(ID_region, ID_industry) # sort by region and industry 312 
 313 
  # 2/ Distinguish combustion and non-combustion 314 
  # Extract combustion emissions 315 
  combustion_emissions <- GHG_emissions %>% filter(str_detect(Item, "- combustion -")) 316 
  # Extract non-combustion emissions, which include both emissions flagged as "non 317 
combustion" but also emissions with no "combustion" or "non combustion" flags, e.g. "CH4 - 318 
waste - air" 319 
  non_combustion_emissions <- GHG_emissions %>% filter(!str_detect(Item, "- combustion -")) 320 
 321 
  # 3/ Step 4: Sum by industry, region and GHG and join with total_production to get the 322 
production in M€ and calculate the emissions per M€ 323 
  # COMBUSTION 324 
  combustion_emissions <- combustion_emissions %>%  325 
    group_by(ID_region, ID_industry, GHG) %>% 326 
    summarise(Emissions_kg_CO2_eq = sum(Emissions_kg_CO2_eq)) %>% 327 
    # Compute the emissions per M.EUR using total production 328 
    left_join(total_production, by=c("ID_region", "ID_industry")) %>%  329 
    mutate(Combustion_emissions_per_mEUR = Emissions_kg_CO2_eq / Total_production)  330 
  # NON-COMBUSTION 331 
  # same as above on "non_combustion_emissions" 332 
 333 
  # 4/ Join the 2 sub-tables to have 1 table with combustion and non-combustion emissions 334 
and sum by industry and region 335 
  D_CC <- combustion_emissions %>%  336 
    full_join(non_combustion_emissions, by=c("ID_region", "ID_industry", "GHG")) %>% 337 
    arrange(ID_region, ID_industry, GHG) %>%  338 
    # Total emissions per mEUR per (industry; region) 339 
    group_by(ID_region, ID_industry) %>% 340 
    summarise(Combustion_emissions_per_mEUR = sum(Combustion_emissions_per_mEUR,  341 

                                            na.rm = TRUE), 342 
           Non_combustion_emissions_per_mEUR = sum(Non_combustion_emissions_per_mEUR,      343 
                                                        na.rm = TRUE)) 344 

 345 
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2.1.B.2  Land use, encroachment, fragmentation, nitrogen deposition 346 

The D matrix related to land use (LU), encroachment (E), fragmentation (F) and nitrogen deposition (N), 347 

noted DLUEFN, provides the amount of each raw materials3 related to the production of one million euros of 348 

each {region; industry} in t/mEUR. It is computed based on the materials account which documents the total 349 

quantity of raw materials extraction for each industry. Raw materials can be split in broad categories 350 

corresponding to the CommoTools developed for the GBS: primary crops, non-primary crops (fodder, crop 351 

residues), grazing, wood logs, metal ores, non-metallic minerals and fossil fuels. Some categories require 352 

more computation steps than other, as we will explain below. Hence the distinction between DLUEFN matrix, 353 

a broad mother-matrix that results from the computation steps common to all raw material categories, and 354 

the subsequent DLUEFN_category matrices that are the end-results used in the assessments. 355 

2.1.B.2.1 Computation of DLUEFN  mother matrix 356 

The computation of DLUEFN is straightforward. Starting from the environmental extension related to raw 357 

materials (converted from kilotonnes into tonnes), the total quantity of each raw material extracted is simply 358 

divided by the total output per {region; industry} to get the extraction in t/mEUR. One subtle point is that 359 

EXIOBASE distinguishes two types of extractions: the “used domestic extraction” and the “unused domestic 360 

extraction”. The first type documents the actual quantity of raw material extracted (e.g. tonnes of carrots) 361 

while the second one refers to the amounts that come with the raw materials of interest but are not used 362 

(e.g. stems, leaves and other residuals of biomass extraction, overburden for mining activities). The 363 

biodiversity impact factors in the M matrices, computed based on CommoTools outputs, consider tons of 364 

used materials: tons of actually cultivated carrots, tons of extracted ores (without the overburden which is 365 

estimated separately). Therefore, only the domestic extraction is considered in the DLUEFN matrices to ensure 366 

consistency.  367 

COMPUTING D_LUEFN 368 
D_LUEFN <- EE_data_materials %>% # EXIOBASE materials account 369 
    # keep only the used extraction because "unused extraction"" does not correspond to 370 
additional raw materials but rather to extractions that we don’t want to consider 371 
(overburden in mining, leaves and stems for crops...) 372 
    filter(str_detect(Item, "Domestic Extraction Used")) %>% 373 
    left_join(total_production, by = c("ID_region", "ID_industry")) %>% 374 
    # compute the quantity of raw material extracted per mEUR 375 
    mutate(Quantity = Total_quantity / Total_production, 376 
           Item = str_replace(Item, "Domestic Extraction Used - ", "")) %>% 377 
    select(ID_region, ID_industry, ID_region_group, ID_industry_group, Item, Quantity) 378 

 379 

 

 

3 Designated by the variable “Item” in the code. The raw format of Item is “Type of extraction – Raw material category – 

Raw material”, e.g. “Domestic Extraction Used – Primary Crops – Avocados”. 
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 380 

Figure 4: Link between DLUEFN mother matrix and the matrices used in GBS 381 

Figure 4 illustrates how final D matrices are computed based on DLUEFN mother matrix.  382 

2.1.B.2.2 Computation of DLUEFN_primary_crops and DLUEFN_non_primary_crops 383 

DLUEFN_primary_crops and DLUEFN_non_primary_crops are computed simply by filtering DLUEFN to keep the items of the 384 

desired category4.  385 

2.1.B.2.3 Computation of DLUEFN_extractive 386 

On the contrary DLUEFN_extractive, the D matrix related to metal ores, requires more work. Indeed, the “used” 387 

extraction provided by EXIOBASE is the total quantity of extracted gross ore without the overburden (cf. 388 

above) but including gangue, not the quantity of the ore of interest. The quantity of extracted gross ore is 389 

computed by EXIOBASE team based on production data per metal taken from the British Geological Survey 390 

(BGS 2014) and an estimation of ore densities obtained through interviews with experts and a literature 391 

review. Since the GBS CommoTool gives the impact per tonne of metal (CDC Biodiversité 2020d), we need 392 

to correct the data so that DLUEFN_extractive documents tonnes of metal. For now, we do so by working 393 

EXIOBASE computation backwards: 394 

1. Get BGS data and compute the total production of each metal per EXIOBASE region 395 

2. Compute the ore density per {region; metal} by dividing the total production by the gross ore 396 

extraction 397 

3. Apply the computed ore grades to the gross ore extraction data in DLUEFN to get the 398 

corresponding metal extraction 399 

A path to improve the methodology in the future would be to be able to use directly the ore grades used 400 
by EXIOASE instead of re-computing them.  401 

 

 

4 This is fairly easy since the raw material category is documented in the Item name. In the end matrices, only the raw 

material name is kept from the original name. 
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The 9 metals considered in the CommoTool are aluminium, copper, iron, gold, lead, nickel, silver, tin and 402 

zinc. They correspond to separate mining industries in EXIOBASE and their extraction is separately 403 

documented in the environmental extensions, except for aluminium which corresponding industry is “Mining 404 

of bauxite and aluminium” and raw material is “Bauxite and aluminium”. We thus need to make an 405 

assumption on the proportion of bauxite and aluminium in the raw material extracted.  406 

ASSUMPTION 407 

The proportion of bauxite in the raw material “Bauxite and aluminium” is 100%. The corresponding 408 
quantity of aluminium is computed using the ratio of aluminium to bauxite, which is 16.5%.  409 

The main code lines involved in the computation of regional ore grades and DLUEFN_extractive are reproduced 410 

below. To ensure data consistency, the computed grades are compared with the highest known grade for 411 

each metal5. When the computed grades are higher than 1.5 the highest known grade6, they are replaced 412 

by the maximum between the world average and half the highest grade. This replacement procedure allows 413 

to 1) maintain differentiation between mines (world average is not the only replacement figure and a high 414 

grade is allocated to mines for which a high grade was computed), 2) ensure that abnormal grades are 415 

controlled for (computed grades higher than 1.5 the highest grade are replaced), and 3) stick to a rather 416 

conservative approach (for mines with a very high computed grade, only half the world’s highest grade is 417 

used rather than the highest grade). Other abnormal computed grades (superior to 1 for instance) are 418 

replaced by the average grade. 419 

 420 

COMPUTE ORE GRADE PER EXIOBASE REGION   421 
ore_grade_per_exiobase_region <- bgs_2011_production %>% 422 
  # Link each BGS country to the corresponding EXIOBASE region 423 
  # […] 424 
  # compute the ore grade per region and metal based on the production documented on BGS 425 
data and the extraction documented in EXIOBASE materials account 426 
  group_by(ID_region, commo_name) %>% 427 
  mutate(region_production = sum(Production_tons, na.rm = TRUE), 428 
         ore_grade = region_production / extracted_tons) %>% 429 
  # […] 430 
  # convert bauxite into aluminium 431 
  mutate(ore_grade = case_when( 432 
    commo_name == "Bauxite" ~ ore_grade * bauxite_to_alu_ratio, 433 
    TRUE ~ ore_grade), 434 
    commo_name = if_else(commo_name == "Bauxite", "Aluminum", commo_name)) %>% 435 
  # computed grade analysis based on ore characteristics 436 
  left_join(extractive_ore_specs, by = "commo_name") %>% 437 
  group_by(commo_name) %>% 438 

 

 

5 The highest ore grades for each metal can be found online rather easily on specialized sites like mining.com which provide 

rankings of highest-grade mines for several ores (copper, gold, lead, silver, zinc) based on private data from Mining 

Intelligence. We compare to 1.5 x highest grade to allow for uncertainty around the highest grade. 
6 For iron we compare to the highest grade instead of 1.5 x highest grade because the highest known grade is 0.7, hence 

1.5 x highest grade would be superior to 1. 
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  # when the computed grade is higher than 1.5*highest_grade, we replace by the max between 439 
highest_grade/2 and average_grade 440 
  mutate(ore_grade = case_when( 441 
    ore_grade > 1.5 * commo_grade_highest & commo_name != "Iron" ~  442 

   max(commo_grade_highest / 2, commo_grade), 443 
    ore_grade > commo_grade_highest & commo_name == "Iron" ~  444 

   max(commo_grade_highest / 2, commo_grade), 445 
  # use average values when the computed grade is obviously weird 446 
  # […]     447 
 448 
COMPUTE D_LUEFN_EXTRACTIVE 449 
D_LUEFN_extractive <- D_LUEFN %>% 450 
  # keep only the 9metals considered in the commotool 451 
  # […] 452 
  # compute the amount of metal extracted 453 
  left_join(ore_grade_per_exiobase_region, by = c("ID_region", "commo_name")) %>% 454 
  mutate(Quantity = Quantity * ore_grade) 455 

 456 

2.1.B.2.4 Computation of DLUEFN_wood_logs 457 

Text will be added here in future reports 458 

2.1.B.2.5 Computation of DLUEFN_oil_and_gas 459 

Text will be added here in future reports 460 

 461 

2.1.B.3 Hydrological disturbance 462 

The impact factors related to hydrological disturbance due to water abstraction (consumption and 463 

withdrawal) are expressed in MSA.km² per cubic meter of water withdrawn and consumed (CDC 464 

Biodiversité 2019c). The D matrix related to this pressure, noted DHD should thus document the cubic meters 465 

of water withdrawn and consumed per million euros of production. Its computation based on EXIOBASE 466 

environmental extensions is rather straightforward since the water account documents, among others, the 467 

total quantity of water consumed and withdrawn per {region; industry} in millions of cubic meters. As for 468 

GHG emissions, dividing by the total monetary production of the industry gives the cubic meters consumed 469 

and withdrawn per million euros. A subtility however is that the water account distinguishes extractions of 470 

green water (coming from evapotranspiration of the vegetation), blue water (coming from water bodies) and 471 

grey water (post-industrial processes) for each {region; industry}. Considering that the impact factors 472 

concern the water abstracted from rivers and wetlands, only blue water is considered. 473 
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C M MATRICES 474 

As defined in Section 2.1.A, M matrices contain the impact factors per unit of environmental pressure. In 475 

GBS framework, M matrices contain the biodiversity impact of one unit of kg CO2-eq, one ton of any raw 476 

material and one million of cubic meters of water consumed or withdrawn. The impacts are expressed in 477 

MSA.km²/unit and are spatialized at the EXIOBASE region level. They thus fall into the data quality tier 2. 478 

The computation of M matrices is more straightforward than that of D matrices since it only requires to 479 

aggregate the results of the CommoTools at the desired geographical scale.  480 

2.1.C.1 Climate change 481 

The M matrix for climate change, MCC, is simple since the impact of 1 kg CO2-eq is the same everywhere. 482 

Since the impact factor is 4.37.10-9 MSA.km²/kg CO2-eq (CDC Biodiversité 2020f), MCC is thus simply a 483 

column vector of size (𝑟 × 𝑠) = 49 × 163 = 7987 lines with the impact factor 4.37.10-9. 484 

2.1.C.2 Land use, encroachment, fragmentation, nitrogen deposition 485 

The crop CommoTool provides impact factors for each FAO primary and non-primary crop in MSA.m²/ton 486 

at the country level (CDC Biodiversité 2020b). The items in EXIOBASE material accounts, and thus in  487 

DLUEFN_crops and DLUEFN_non_primary_crops are the same as that of the crop CommoTool since EXIOBASE uses 488 

FAOSTAT data. The item correspondence is thus straightforward. Computing MLUEFN_crops and 489 

MLUEFN_non_primary_crops therefore only requires the aggregation of the crop CommoTool impact factors from the 490 

country level to EXIOBASE region level. The correspondence between FAO countries and EXIOBASE 491 

regions is presented in (CDC Biodiversité 2019a). For each crop, the regional impact factor is computed as 492 

the weighted average of the impact factors of the countries in the region using the share of the country 493 

production in the total regional production of the crop as weight. A unit conversion is applied to express the 494 

impact factors in MSA.km²/ton. 495 

The procedure is identical for the computation of biodiversity impact factors of metals. MLUEFN_extractive 496 

aggregates the results of the extractive CommoTool (CDC Biodiversité 2020d). 497 

2.1.C.3 Hydrological disturbance 498 

The impact factors of MHD aggregate the results of the CommoTools for the pressure hydrological 499 

disturbance. 500 

D D∘M MATRICES 501 

D∘M matrices (D_x_M in the code) are the Hadamard products of matching D and M matrices. Since D 502 

matrices transform economic activity into contribution to pressures on biodiversity and M matrices translate 503 

contributions into impact on biodiversity; combining both matrices translates million euros into biodiversity 504 

losses. The impact factors are therefore expressed for each {region; industry} in MSA.km²/mEUR. The 505 
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computation of D∘M matrices is done simply by 1) multiplying the units of pressures (in D matrices, e.g. tons 506 

of each raw material consumed) by their impacts (in M matrices, e.g. the impact of the extraction of 1 ton 507 

of the raw material considered) and 2) aggregating the impacts at the {region; industry} level (e.g. summing 508 

for all the raw materials consumed by the {region; industry}). 509 

E COMPUTING THE STATIC AND DYNAMIC IMPACTS PER 510 

SCOPE 511 

Impacts assessed through the direct environmental impacts and biodiversity impacts matrices are broken 512 

down between Scope 1, Scope 2 and Scope 3. The function IO_evaluator_activity computes Scope 1, 513 

Scope 2, Tier 1 of upstream Scope 3 (noted Tier 1 in subsequent text) and whole upstream Scope 3 static 514 

and dynamic impacts for all pressures. The results are computed by separate sub-functions and stored in 515 

separate data frames. 516 

Scope 1 impacts correspond to the impacts related to the company’s production, i.e. its own turnover in 517 

the various {region; industry} pairs where it operates, not considering the related purchases. Computing the 518 

Scope 1 impact thus requires only to multiply the company’s turnover (broken down by {region; industry}) 519 

by the D∘M matrices. The typical code is presented below. 520 

COMPUTE SCOPE 1 IMPACT (DYNAMIC OR STATIC) 521 
# p replaces any pressure subscript. Amount is the turnover in the {region; industry} 522 
scope1_impact <- pre_treated_activity_production %>% 523 
    left_join(D_x_M_p, by = c("ID_region", "ID_industry")) %>% 524 
    mutate(F_p = D_x_M_p * Amount) %>% 525 
    # regroup lines that were split in the pre-treatment 526 
    group_by(ID_line, ID_relationship, Name_business,  527 

      ID_region, ID_region_group, ID_industry, ID_industry_group, Amount) %>% 528 
    summarise(F_p = sum(F_p, na.rm = TRUE)) 529 

 530 

Scope 2 impacts refer to the biodiversity impacts of the generation of the electricity, steam, heat and cold 531 

purchased. By definition, it includes only tier 1 suppliers, i.e. the ones selling directly to the company, and 532 

not those generating energy for the companies’ other suppliers. These purchases in the various {region; 533 

industry} pairs are identified thanks to the IO tables which display the purchases to energy generation 534 

industries7. For now, only the climate change impacts of Scope 2 are considered, defined as the impacts 535 

due to combustion related GHG emissions (EXIOBASE distinguishes emissions due to fossil fuel combustion 536 

 

 

7 The energy production industries are: production of electricity by coal, production of electricity by gas, production of 

electricity by nuclear, production of electricity by hydro, production of electricity by wind, production of electricity by 

petroleum and other oil derivatives, production of electricity by biomass and waste, production of electricity by solar 

photovoltaic, production of electricity by solar thermal, production of electricity by tide, wave, ocean, production of 

electricity by geothermal, production of electricity nec, steam and hot water supply. 
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from non-combustion emissions). The allocation rule for splitting tier 1 between energy and non-energy 537 

purchases is the following: for each region x industry: 538 

- if the industry is not an energy generation industry, all the impacts are considered non-energy 539 
(Share_non_energy = 1, Share_energy = 0) 540 

- if the industry is an energy generation industry, the impacts are split between energy and non-541 
energy according to the share of GHG emissions due to combustion in the total GHG emissions 542 

of the industry (Share_energy = 
𝐶𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
, Share_non_energy = 543 

𝑁𝑜𝑛_𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
). 544 

COMPUTE THE SHARE OF ENERGY TO NON ENERGY RELATED EMISSIONS FOR SCOPE 2 545 
share_energy_non_energy <- D_CC %>% 546 
    # Join with exiobase_industries to get the name (and not the ID) of industries and 547 
allow string searches on industry names 548 
    left_join(exiobase_industries, by = "ID_industry") %>% 549 
    # identify electricity production industries 550 
    mutate(Is_electricity=ifelse(str_detect(Exiobase_industry,"Production of electricity"), 551 

                          1,0),  552 
           Is_steam = ifelse(str_detect(Exiobase_industry,"Steam and hot water supply"), 553 
                             1,0), 554 
           # Identify energy related industries 555 
           # Is_energy_industry equals to 1 or 0 as an industry cannot both be electricity 556 
and steam related 557 
           Is_energy_industry = Is_electricity + Is_steam, 558 
           # the share of impacts allocated to energy is that of the share of combustion 559 
emissions in total GHG emissions 560 
           # for non-energy industries this share is 0 561 
           Share_energy = Is_energy_industry * 562 
Combustion_emissions_per_mEUR/(Combustion_emissions_per_mEUR+Non_combustion_emissions_per_m563 
EUR), 564 
           # For energy industries, the share of impacts allocated to non-energy is that of 565 
the share of non-combustion emissions in total GHG emissions 566 
           # for non-energy industries this share is 1 567 
           Share_non_energy = 1-Share_energy) 568 

 569 

The Scope 2 impacts are then computed using the A matrix (to identify the direct purchases related to the 570 

turnover in each {region; industry}), DCC matrix (to get the GHG emissions caused by the production of the 571 

inputs purchased) and the share_energy_non_energy matrix to split the emissions between Scope 2 and 572 

Tier 1:  573 

𝑖𝑚𝑝𝑎𝑐𝑡 𝑆𝑐𝑜𝑝𝑒 2𝑗 = 𝑖(𝑀 ∘ 𝐷𝐶𝐶). 𝐴. 𝑥𝑗 × 𝑠ℎ𝑎𝑟𝑒𝑒𝑛𝑒𝑟𝑔𝑦. 574 

In a future version of the tool, we might want to also attribute part of the Tier 1 LUEFN impacts to Scope 575 
2, for instance to account for the land occupation of energy plants.  576 
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Upstream Scope 3 impacts refer to all the remaining upstream impacts. They are computed based on the 577 

purchases related to the company’s activity in the various {region; industry} pairs and the different suppliers’ 578 

tiers (tier 1, tier 2, etc. suppliers) are distinguished thanks to the IO tables. Tier 1 impacts are computed 579 

based on the A matrix, while upstream value chain impacts are computed based on the Leontief inverse 580 

matrix (cf 2.1.A) 581 

𝑖𝑚𝑝𝑎𝑐𝑡𝑗 = 𝑖(𝑀 ∘ 𝐷)(𝐼 − 𝐴)−1𝑥𝑗  ~ 𝑖𝑚𝑝𝑎𝑐𝑡𝑗 = 𝑖(𝑀 ∘ 𝐷)L. 𝑥𝑗 .  582 

COMPUTE VALUE CHAIN IMPACTS 583 
# compute value chain impacts for each row of impact_data (a dataframe with pre-treated 584 
activity production data and Scope 1 impact per pressure) 585 
for(i in 1:nrow(impact_data)){  586 
  row <- impact_data[i,] # select the row 587 
  # get the corresponding column in the Leontief inverse matrix to compute the total input 588 
purchases per mEUR 589 
  vector <- L_inverse_matrix_integer[, (163 * (row$ID_region - 1) + row$ID_industry)] / 590 
10^6 591 
  # compute the purchases for the turnover 592 
  purchases <- row$Amount * vector 593 
  # compute the related impacts for each pressure. “*” replaces any pressure subscript 594 
  impacts_* <- D_x_M_* * purchases 595 
  # bind the results and handle column names 596 
  # […] 597 
  # filter out the lines for wich the total impact is null to limit the size of the 598 
databases 599 
  # […] 600 
  # store the impact of each line in a list 601 
  impact_list[[i]] <- impacts  602 
} 603 
# Combine the elements of the list 604 
impact <- do.call(rbind.data.frame, impact_list) 605 

 606 

The Tier 1, Scope 2 and Scope 1 impacts are subtracted to the upstream value chain impacts in another 607 

part of the code to get the “rest of (upstream) Scope 3” impacts. 608 

2.2 Using activity data to assess impacts 609 

A DIMENSIONING THE IMPACT 610 

2.2.A.1 Data pre-treatment  611 

The computation of a default corporate footprint requires very limited data, namely the turnover of the 612 

company broken down by region and industry of operation. Ideally, those data should be provided in the 613 

EXIOBASE nomenclature, i.e. using EXIOBASE 3 region and industry terminologies (listed in (CDC 614 
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Biodiversité 2019a)), and grouped by {region; industry} pairs, i.e. splitting the turnover made in industry X 615 

between {region A; industry X} and {region B; industry X}. We learnt from the case studies that such detailed 616 

data is however seldom available. Most often, the data provided either do not fit the EXIOBASE 617 

nomenclature or document the region and industry mix separately instead of by {region; industry} pair. We 618 

thus apply data transformation rules so that the data format fits the required GBS input. Two guiding 619 

assumptions shape these rules. The first one is that getting industry figures right matters more than getting 620 

regional figures right because we assume that in most cases, difference between industries  are more 621 

significant than regional differences (e.g. Cultivation of wheat is more different from Petroleum refinery than 622 

Cultivation of wheat in France is different from Cultivation of wheat in Germany). The second one is that the 623 

best hypothesis when data on turnover breakdown are lacking is to consider the average region or industry 624 

breakdown. In some situations, these assumptions may be clearly misleading, the assessors should then 625 

either take more appropriate assumptions, or avoid assessing the problematic entity altogether, if no 626 

satisfying assumptions can be made. Overall, assumptions should ensure assessments are fit for purpose, 627 

rigorous and consistent. 628 

The cases most commonly encountered so far and the corresponding rules are presented below. They are 629 

applied through manual, and automated data treatment transcribed in the function FI_pre_treatment. 630 

2.2.A.2 Dealing with data gaps 631 

The procedure used to deal with data gaps, summarised by Figure 5, is explained hereafter. 632 

 633 

Figure 5: Dealing with data gaps. R = region, I = industry 634 
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➢ The data is in a nomenclature other than EXIOBASE 3.  635 

We established correspondence tables between the European NACE rev 2 nomenclature of industries and 636 

EXIOBASE 3 (cf. (CDC Biodiversité 2019a)). Industry-related data can thus be provided in NACE rev 2 637 

nomenclature, as well as in the French INSEE nomenclature. If the data is provided in another nomenclature, 638 

we convert it manually to the most appropriate EXIOBASE category. 639 

➢ The level of detail of the region or industry documented is different from that of EXIOBASE 640 
categories 641 

As presented, EXIOBASE region categories are at the country or group of country level. Three sub-cases 642 

can occur. 643 

First, data can be provided at a lower geographical level than EXIOBASE (e.g. infra-national state or county). 644 

They are then allocated to the corresponding country. 645 

Second, data related to countries not individually listed in EXIOBASE are allocated to one of the 646 

corresponding “Rest of” regions (for instance “Rest of Asia”). 647 

Third, data related to wider geographical areas than the EXIOBASE 49 “regions” (e.g. a turnover reported 648 

for the entire European Union and not separately for each Member State) are allocated to one of EXIOBASE’ 649 

11 region groups that fit the most commonly used regional entities (e.g. European Union, Asia, South 650 

America…). If none of the 11 region groups fit, it is associated to the “World” region group, specific to GBS 651 

analyses.  652 

In this third case where turnover is specified at the region group level, data undergoes a second step during 653 

which the associated turnover is split between the regions of the group based on the share of the production 654 

of the group in each region. For instance, if the company operates in the industry “Cultivation of wheat” but 655 

turnover data – say EUR 100 million – is documented for the European Union as a whole, the turnover will 656 

be split between the countries of the European Union according to their share in the production of the 657 

industry “Cultivation of wheat” in the total industry production in the European Union as reported in 658 

EXIOBASE 3. Thus, we will assume that only 5% of the “Cultivation of wheat” turnover of the company is 659 

made in Belgium if the Belgian production of wheat represents 5% of the European Union’s production of 660 

wheat. In short, when data is documented at the group level, we assume that the company’s mix fits 661 

EXIOBASE mix. 662 

In all three cases, the rules applied to regions are similarly applied to industries. 663 

➢ The region mix and industry mix of turnover are documented separately instead of by 664 
{region; industry} pair.  665 

Three cases are distinguished. 666 
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First, if the company operates in only one industry and several regions, the turnover is split between the 667 

regions documented based on the share of turnover made in each region 668 

Second, if the company operates in only one industry and one or more region groups, the turnover is first 669 

split by region group based on the share of turnover made in each region group to obtain {region group; 670 

industry} pairs. Then, it is split between the regions of each group based on the share of the region in the 671 

region group production for the industry to obtain {region; industry} pairs. 672 

Third, if the company operates in several industries or industry groups and one or more regions or region 673 

groups, maintaining both the documented region and industry mixes while using average turnover 674 

breakdown (in line with the second guiding assumption listed above) would lead to inconsistencies. 675 

Considering the first guiding assumption that industry level data are more discriminating than region level 676 

data, we only use the company’s industry level mix data and rely on EXIOBASE data to split the turnover 677 

between the regions listed. 678 

➢ The turnover split per region or region group is not available.  679 

We use EXIOBASE region mix for the industry of interest. For each industry, the turnover is split between 680 

the 49 regions according to the share of each region in the world production of the industry in EXIOBASE 681 

data and the rules described above are applied. 682 

➢ The turnover split per industry or industry group is not available.  683 

We manually classify the company into the most relevant EXIOBASE industry and consider that 100% of its 684 

turnover is made in this industry. If this assumption is not satisfactory, it might be preferable to keep the 685 

company out of the assessment altogether. The rules described above are applied. 686 

2.2.A.3 Impact evaluation 687 

2.2.A.3.1 Methodology 688 

Impact evaluation is done through the functions IO_evaluator_activity (computes the impacts per 689 

pressure, scope and commodity, cf. above) and IO_activity_assessment (results formatting to display 690 

summary tables and graphs). Aside of impact tables, the default assessment also returns a “default 691 

inventory” (Scope 1 and whole value chain) as computed with the environmental extensions of EXIOBASE. 692 

The default inventory displays the quantity of raw materials (crops, non-primary crops, metals; in tons) and 693 

water (in Mm3) consumed due to the company’s activity. When possible, these default inventories can be 694 

compared to companies’ real inventories to investigate the potential differences between default and refined 695 

impacts, as well as to better understand default impacts. Default inventories are computed thanks to the 696 

function how_many_commodities that relies on D matrices and companies’ turnover per {region; industry} to 697 

compute the corresponding amounts of raw materials. 698 

COMPUTE DEFAULT INVENTORY FOR A SPECIFIED COMMODITY TYPE 699 
how_many_commodities <- function(data, detail_level = NULL, commodity){ 700 
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 701 
  # The parameter “data” is either the pre-treated production data (for Scope 1 default 702 
inventory) or impact data (output of the evaluator subfunction for value chain default 703 
inventory). The column used is the one that indicates production (Amounts or Purchase, in 704 
mEUR)  705 
  # If default inventory for the value chain, do required data manipulations 706 
  # […] 707 
 708 
  # For the specified commodity c 709 
  if(commodity == c){ 710 
    commodity_account <- data %>% 711 
      # Compute the quantity of the commodities of the type for each line based on the 712 
      corresponding D matrix 713 
      left_join(D_LUEFN_*, by = c("ID_region", "ID_industry")) %>% 714 
      mutate(raw_materials_consumed_tons = Quantity * Amount) 715 
 716 
    # sum at the desired level of detail if required 717 
    if(is.null(detail_level)){ 718 
      commodity_account <- commodity_account %>% 719 
        summarise(raw_materials_consumed_tons = sum(raw_materials_consumed_tons,  720 

                                             na.rm = TRUE)) %>% 721 
        filter(raw_materials_consumed_tons != 0) 722 
    } 723 
    else { 724 
      commodity_account <- commodity_account %>% 725 
        group_by_at(detail_level) %>% 726 
        summarise(raw_materials_consumed_tons = sum(raw_materials_consumed_tons,  727 
                                                    na.rm = TRUE)) %>% 728 
        filter(raw_materials_consumed_tons != 0) 729 
    } 730 
  }  731 
 732 
return(commodity_account) 733 

 734 

Default inventories are computed only for the raw materials categories for which a CommoTool exists and 735 

are updated as new CommoTools are developed. Materials not yet taken into account in the assessment 736 

are also computed by the function compute_materials_not_included in order to give an idea of the size of 737 

the impact that is not accounted for. Materials not taken into account may be materials for which a 738 

CommoTool is under development (e.g. forestry) or materials for which no CommoTool is planned yet due 739 

to data limitation (e.g. fisheries). 740 

2.2.A.3.2 Example: biodiversity footprint of the production of EUR 1 million of French wheat 741 

We illustrate the methodology using the example of the computation of part of the biodiversity footprint of 742 

the production of EUR 1 million worth of French wheat. The pressures assessed are listed in Figure 6. The 743 

whole upstream value chain is assessed, taking into account the impact of crops, metals and water 744 

consumption. 745 
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 746 

Figure 6. Perimeter of the pressures assessed in this application (LUEFN: land use, encroachment, fragmentation and 747 
atmospheric nitrogen deposition) 748 

The Wheat production industry in France purchases from many other industries and listing the impacts 749 

associated with all of them would make the example barely readable. In order to keep explanations simple 750 

and reader-friendly, the example thus highlights the impacts caused by two specific purchases, which 751 

represent only a small fraction of the total impacts. 752 

The two steps of the default assessment computation described above are followed, the underlying data 753 

are provided in the package GBStoolbox in a .rda file called example_IO_french_wheat_input_data.rda. 754 

The application of the functions IO_pretreatment_import(), IO_pretreatment and IO_evaluator() gives 755 

the following results. 756 

The first step links the production assessed to its direct biodiversity impacts. As explained, it is divided into 757 

two sub-steps. In the first sub-step, “direct environmental impacts” related to {France; Cultivation of wheat} 758 

are extracted from EXIOBASE environmental extensions. Here, the GHG emissions documented in the 759 

emission accounts is 842 943 kg CO2-eq. The raw material quantity documented in the material accounts 760 

is 4 0808 tons of wheat. 761 

In the second sub-step, biodiversity impacts are computed based on the inventories obtained through the 762 

first sub-step. For raw materials, the crop and metals CommoTools are used ((CDC Biodiversité 2020b), 763 

(CDC Biodiversité 2019e)). For pressures other than CC, the Scope 1 dynamic impact of the production of 764 

4 080 t of wheat is assessed at 21 924 MSA.m2.  765 

GHG emissions related impacts are computed using the “climate change” factor. The Scope 1 CC impact 766 

related to GHG emissions amounts to 3 684 MSA.m2 for terrestrial biodiversity. The CC impact on aquatic 767 

biodiversity is 83 MSA.m². 768 

The second step repeats the analysis for suppliers. In this example, the perimeter is limited to direct (i.e. tier 769 

1) suppliers. The amounts purchased for the production of EUR 1 million worth of French wheat are 770 

documented in the IO table. Among many other purchases, the purchase of EUR 7 500 from {Russia; 771 

 

 

8 In (CDC Biodiversité 2019b) this figure was 5 289. The difference is due to the fact that we now consider only the used 

extraction, as explained in 2.1.B.2.1.  
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Petroleum refinery} is required. In the rest of the text, we focus only on the impact related to {Russia; 772 

Petroleum refinery}. In the first sub-step, the GHG emissions are identified from the emission account (the 773 

raw material extraction induced could also be read from the material account but it is excluded from the 774 

perimeter of this example). The amount of refined petrol purchased causes the emissions of 5 794kg CO2-775 

eq.  776 

Concerning the Scope 2 impacts (impacts related to the generation of the electricity, steam, heat and cold 777 

purchased), IO tables provide all the non-fuel energy purchases. We focus on purchases from {France; 778 

Production of electricity by coal}. Only EUR 65 are purchased from {France; Production of electricity by 779 

coal}, inducing the emission of 732 kg CO2-eq. 780 

In the second sub-step, the biodiversity impacts for the two specific purchases we focus on are evaluated. 781 

For petrol purchases, they amount to 26 MSA.m² and for the Scope 2 impact of purchases from {France; 782 

Production of electricity by coal}, they amount to 3 MSA.m². These impacts are very limited due to the 783 

perimeter of the study. In general though, Scope 2 and 3 represent a significant share of the total impacts 784 

of businesses, especially when impacts across the entire upstream value chain are considered. 785 

The output of the assessment for French wheat is presented on Table 29 and Figure 7 to Figure 10. Static 786 

impacts amount to 7.8 MSA.km², mainly occurring in Scope 1 due to terrestrial spatial pressures. 787 

 788 

Table 2: GBS output for the dynamic impact of the production of EUR 1 million worth of French wheat. CC: Climate 789 
change, Other pressures gather Land use, Encroachment, Fragmentation, Nitrogen deposition, HD: Hydrological 790 
Disturbance, Land use in catchment of rivers and wetlands, Wetland conversion, Freshwater eutrophication, TBA in 791 
2020: To be added in 2020 792 

Perimeter Scope 1 Scope 2 Scope 3, tier 1 Rest of Scope 3 

Pressure CC 
Other 

pressures 
CC 

Other 

pressures 
CC Other pressures CC 

Other 

pressures 

Impact 

(MSA.m²) 
3 683 21124 5.8 TBA in 2020 358 440 469 378 

 

 
        

 793 

 

 

9 Figures are different from the ones presented in (CDC Biodiversité 2019b) due to the addition of aquatic pressures. Also, 

the 3700 MSA.m² for Tier 1 – CC in this publication was a mistake. 
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 794 

 795 

 

Figure 7: Default dynamic footprint of the production of 

EUR 1 million of wheat in France per scope 

 

Figure 8: Default dynamic footprint of the production of 

EUR 1 million of wheat in France per pressure 

 

Figure 9: Default static footprint of the production of EUR 1 

million of wheat in France per scope 

 

Figure 10: Default static footprint of the production of 

EUR 1 million of wheat in France per pressure 

 796 
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2.2.A.3.3 Tests 797 

The results of the French Wheat example are used in the test test-IO_french_wheat of the package 798 

GBStoolbox. The expected results are saved in the .rda file 799 

example_IO_french_wheat_expected_results.rda in the folder data of the package. The test checks that 800 

computed and expected results are consistent. This is especially useful to check that new developments 801 

(e.g. new CommoTools and addition of the related impacts) do not alter computed impacts for older 802 

developments. 803 

B ATTRIBUTING 804 

2.2.B.1 Financial asset focus: listed equities and corporate debt 805 

This section deals with one of the three applications of the EEMRIO framework in the GBS: financial asset 806 

footprint assessment. 807 

2.2.B.1.1 Methodology 808 

An equity portfolio can be seen as a bundle of business activities. Corporate loans can be seen in a similar 809 

light, with debt replacing equity. In both cases, the funding source can be considered to own part of the 810 

businesses it finances. Consequently, a part of the impacts generated by the businesses financed can be 811 

attributed to the funding source. 812 

Assessing the footprint of financial assets involves two steps. 813 

First, in the dimensioning step, the biodiversity impact of the business activities financed are assessed. If no 814 

specific data is available, it will involve the default corporate assessment methodology described above. At 815 

the current stage of development, this approach can be applied only to listed equity and to large corporation’ 816 

debt. For private equity, data are usually too scarce to conduct default assessment with the methodology 817 

described above. For small and medium enterprise corporate loans, data will be similarly lacking. Specific 818 

methodologies will therefore need to be developed for those asset classes. 819 

Then, in the attribution step, a fraction of the footprint of the companies financed is attributed to the funding 820 

source. To do so, attribution factors are computed for each company and are defined as the share of the 821 

company’s enterprise value owned by the funding source, i.e.  822 

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑐𝑜𝑚𝑝𝑎𝑛𝑦,𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 =  
𝑓𝑖𝑛𝑎𝑛𝑐𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑐𝑜𝑚𝑝𝑎𝑛𝑦,𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

𝑒𝑛𝑡𝑒𝑟𝑝𝑟𝑖𝑠𝑒 𝑣𝑎𝑙𝑢𝑒𝑐𝑜𝑚𝑝𝑎𝑛𝑦
. This is in line with the “share of the 823 

assets owned” approach to defining the perimeter under control (CDC Biodiversité 2020a). 824 

The attribution factor is the same for listed equity and corporate loan. It is in line with the attribution factors 825 

used by the Platform for Carbon Accounting for Financials (PCAF 2017). 826 

The total footprint is thus: 827 

𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = ∑ 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡𝑐𝑜𝑚𝑝𝑎𝑛𝑦 × 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑐𝑜𝑚𝑝𝑎𝑛𝑦,𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜𝑐𝑜𝑚𝑝𝑎𝑛𝑦 ∈𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 . 828 
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Although the conceptual definition of the attribution factors is straightforward, practical issues occur when 829 

computing them in practice. Indeed, the value and the number of shares of the companies fluctuate over 830 

time, so that the attribution factors described above as 
𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒

𝑒𝑛𝑡𝑒𝑟𝑝𝑟𝑖𝑠𝑒 𝑣𝑎𝑙𝑢𝑒
 also fluctuate. For instance, let’s 831 

consider the example we took in our Common ground working paper (CDC Biodiversité, ASN Bank, and 832 

ACTIAM 2018): a company Z with a debt of EUR 1000 and 10 shares with an initial value of EUR 100 per 833 

share and thus a market capitalization of EUR 1000. If the shares’ valuation moves from EUR 100 per share 834 

to EUR 50 per share, the attribution factor changes:  835 

Initial attribution factor for owner of 1 share: 
100

10×100+1000
= 5%. 836 

Attribution factor for owner of 1 share after the price change: 837 

          - If the value invested (EUR 100) is used: 
100

10×50+1000
= 6.6% 838 

          - If the current value of the investment is used (EUR 50): 
50

10×50+1000
= 3.3% 839 

Also, the attribution factor changes if there is a share buy-back or a share emission, or if the ratio of the 840 

investment over the market capitalization evolves. Hence, assessing the attribution factors on a particular 841 

date, e.g. December 31st, may lead to biases. Computing attribution factors more frequently and averaging 842 

them over the period considered is a possible solution to this issue, though more data intensive. We 843 

recommend that the enterprise value be computed as the annual average of daily enterprise values at 844 

closure. 845 

2.2.B.1.2 Example: fictitious portfolio 846 

The default assessment is illustrated on a fictitious portfolio gathering companies operating in food (Food 1 and Food 847 
2), oil (Oil) and mining (Mining 1 and Mining 2) sectors. The portfolio is made up of several funds and portfolios owned 848 
by two asset managers (AM 1 and AM 2), its architecture is reproduced on Figure 11. The size of the portfolio is EUR 849 
6.9 billion financed, while the companies gather a total turnover of EUR 75.8 billion (see   850 
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Table 3). The related attribution and dimensioning data are gathered in the file 851 

example_IO_portfolio_input_data.rda, the results are presented on Figure 12 to Figure 17. Figure 12 to 852 

Figure 15 show the aggregated results for the whole portfolio, while Figure 16 and Figure 17 present the 853 

result per company.  854 

855 

 856 

Figure 11: Structure of the fictitious example portfolio 857 

  858 
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Table 3: Composition of the example financial data 859 

Portfolio Fund  Company Enterprise 
value 

(billion 
euros) 

Total 
turnover 

(billion 
euros) 

 Share of total 
market 
capitalisation 
and debt in fund 

Portfolio 1 Fund 1 
 

MINING1 126.8 34.1 0.73% 

OIL 130.9 171.5 0.87% 

Fund 2 MINING1 126.8 34.1 0.37% 

MINING2 97.1 40 1.13% 

Portfolio 2 Fund 1 MINING1 126.8 34.1 0.73% 

OIL 130.9 171.5 0.87% 

Fund 3 FOOD1 265.7 24.7 1.42% 

FOOD2 229.4 76.8 1.95% 

Portfolio 3  MINING1 126.8 34.1 1.46% 

OIL 130.9 171.5 0.87% 

MINING2 97.1 40 3.37% 

Portfolio 4  FOOD2 229.4 76.8 1.95% 
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Figure 12: Example portfolio default dynamic footprint, 

per scope 

 

Figure 13: Example portfolio default dynamic footprint, 

per commodity type 

 

Figure 14: Example portfolio default static footprint, per 

scope 

 

Figure 15: Example portfolio default static footprint, per 

commodity type 
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Figure 16: Example portfolio default dynamic footprint, 

per scope and company 

 

Figure 17: Example portfolio default static footprint, per 

scope and company 

 860 

The dynamic impacts are concentrated on terrestrial biodiversity, while static impacts are more evenly split 861 

between terrestrial and aquatic biodiversity. The dynamic impacts amount to approximately 90 MSA.km², 862 

60% of which are due to climate change (CC) and 30% to the other pressures. Over 75% of the dynamic 863 

impacts not related to CC occur in Scope 1, which is not surprising considering that companies in the 864 

portfolio operate mostly in industries related to raw material production. Dynamic impacts are mainly due to 865 

oil and gas, underlying the more important land use changes induced compared to metals and minerals. 866 

Static impacts are predominantely due to crops and mining commodities, depicting the large surface areas 867 

required by production. The static impact due to ecotoxic substances is reported separately and amounts 868 

for the whole portfolio to 637 MSA.km2 for terrestrial biodiversity, and 0.16 MSA.km2 for aquatic biodiversity  869 

Figure 16 and Figure 17 reveal that Oil is the company with the highest impact, due to the large GHG 870 

emissions related to its activities. The second most impacting company is Food2, which has by far the 871 

highest static impacts. The IO framework enables the computation of the Scope 1 and Scope 3 commodity 872 

inventories related to Food2 activity to investigate further. Food2 operates in the industries “Cultivation of 873 

crops, nec” in Indonesia and “Processing of food, nec” in Switzerland. The Scope 1 inventory thus relates 874 

essentially to its cultivation activities in Indonesia while the Scope 3 inventory is more related to its food 875 

processing activities in Switzerland. Scope 1 inventory contains a limited number of crop items displayed 876 

on Table 4, as well as water consumption (10 Mm3) and various ecotoxic substances (91 188 kg). The 877 

Scope 3 inventory is much larger, counting 200 items gathering crops, fodder crops, metals and minerals. 878 

The impact of each item can be retrieved through their corresponding biodiversity impact factors, allowing 879 

a precise analysis of the companies’ footprint.  880 
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These inventories correspond to economic activities as described in EXIOBASE v3, thus they may not match 881 

the company’s real inventories. When companies can provide data on their real production/purchases 882 

(refined assessment), the related impact is computed and used in the results. For instance, if Food2 was 883 

able to provide its real Scope 1 inventory stating that it produces only 20 000t of Cocoa beans and 50 000t 884 

of Coffee, we would compute the impact of these productions and would use this impact instead of the 885 

impact of the inventory presented on Table 4. Details on refined assessments involving real purchases and 886 

inventory data are provided in Section 3. 887 

Table 4: Food2 crops inventory, Scope 1 888 

Commodity Quantity (tons) Commodity Quantity (tons) 

Natural rubber 164 413 Cinnamon 4 965 

Cocoa beans 39 160 Pepper 4 789 

Coffee, green 35 113 Cloves 3 975 

Tobacco leaves 11 800 Nutmeg, mace, cardamoms 1 089 

Tea 8 259 Spices, nec 275 

Ginger 5 209 Vanilla 192 

 889 

2.2.B.1.3 Tests 890 

The results of the portfolio example are used in the test test-IO_portfolio of the package GBStoolbox. 891 

The expected results are saved in the .rda file example_IO_portfolio_expected_results.rda in the folder 892 

data of the package. The test checks the pre-treatment function and the structure of the overall pre-treated 893 

data. It also checks that computed and expected results are consistent. This is especially useful to check 894 

that new developments (e.g. new CommoTools and addition of the related impacts) do not alter computed 895 

impacts for older developments. The example also provides data to tests impacts aggregation rules. 896 

3 Refined assessments 897 

3.1 Using company data on purchases 898 

In the IO framework, upstream value-chain impacts are computed based on the purchases documented by 899 

the IO model and computed using the Leontief inverse matrix. This procedure gives the monetary purchases 900 
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required to produce EUR 1 million of output of any {region; industry}. Of course, if the company assessed is 901 

able to provide monetary data on its own purchases, company data will be used instead of the default 902 

purchases as illustrated by Figure 18. This might require some data treatment to ensure that company 903 

purchases match the EXIOBASE nomenclature and it is best when monetary purchase data are provided 904 

by {region; industry} pair. Otherwise, pretreatment similar to the procedure explained in Section 2.2.A.2 is 905 

undertaken. 906 

Theoretically, using companies’ real purchases will yield more precise impacts. Yet, this is true only if the 907 

material flows related to the real purchases is closer to companies’ real material flows than the flows 908 

computed based on IO purchases. This may not be the case. Let’s take the example of Food2 involved in 909 

the fictitious portfolio in Section 2.2.B.1.2. Food2 operates in Switzerland in the industry “Processing of food, 910 

nec”. Suppose that Food2 real purchases amount to EUR 50, while the purchases in the IO model are 911 

EUR 100. Then the material flows computed thanks to Food2 purchase data would be half those computed 912 

based on IO purchases, but both inventories would involve the same items (e.g. avocados and apples, even 913 

though the company possibly buys only apples). Relying on real purchase data aligns monetary flows but 914 

does not allow screening in the materials flows embedded in them. The material flows computed based 915 

on real purchase data will match the company’s real material flows only if 1) the company itself fits the 916 

average company in its industry in EXIOBASE and 2) the price structure matches that of 2011 917 

(EXIOBASE data year). Condition 1 implies that the company indeed buys all the items listed in the flows. 918 

Condition 2 ensures that the relative amount of each item is correct (see Section 4.2 for more details). 919 

These two conditions are likely not verified. Hence, relying on real inventory data is preferred.  920 

3.2 Integrating refined assessments from 921 

inventories, pressures, direct 922 

measurements 923 

As explained in (CDC Biodiversité 2020a), the GBS follows a hybrid approach to assess the footprint of 924 

economic activities. At any stage of the assessment, default data (based on IO model industry regional 925 

averages) can be replaced by real company data, either monetary (purchases, see Section 3.1) or not. 926 

Inventory data (tons of materials purchased, GHG emissions) can be used to replace default IO inventory 927 

data, while impacts can be computed directly based on pressure data (land occupation and land use type 928 

on operated areas). Of course, direct measurements can be integrated instead to replace computed 929 

impacts. Any refined value replaces the default value of the corresponding scope (static or dynamic) and 930 

pressure, while other default values are kept unchanged. 931 

Figure 18 illustrates how the GBS proceeds through a stepwise approach. A less accurate default value is 932 

calculated first through the default assessment, then the parts of the footprints which can be recalculated 933 

through refined assessments are replaced. This work is handled by the function IO_analyzer. 934 
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 935 

Figure 18: Illustration of the step-wise approach: less accurate footprints are replaced by more accurate ones when 936 
better data is available 937 

4 Limits and perspectives 938 

EXIOBASE EE MRIO database provides a consistent framework for tracking emissions, resource use and 939 

other environmental pressures along global supply chains. The combination of high sectoral detail and a 940 

wide range of environmental data is fit for the purpose of the IO part of the GBS tool, i.e. describing corporate 941 

contribution to drivers of biodiversity loss within a spatialized framework considering both their direct 942 

contribution and that of their supply chains. Several limitations of the EXIOBASE model and data, as well as 943 

limitations related to their use in the GBS tool should however be acknowledged. 944 

4.1 Limitations of EXIOBASE 3 945 

Building an EE MRIO database is a data-intensive task. Indeed, it requires to combine a heavy load of data 946 

of various types, from monetary supply-use tables stemming from national accounts to energy balances, 947 

trade data, modelled emissions factors and material accounts. Such a work of building consistency between 948 

numerous elements cannot be completed without assumptions regarding data correspondence, formats, 949 
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aggregation and allocation. The choices of EXIOBASE modellers is however precisely documented in 950 

several Supporting information materials.  951 

Because building MRIO datasets requires important data work, a trade-off often exists between regional 952 

and sectoral detail. Namely, MRIO models either provide a wide range of industries and a limited number of 953 

regions, or the opposite: fewer industries but numerous regions. EXIOBASE 3 falls into the first category. 954 

Hence, the regional detail is sometimes scarce, especially for the five “Rest of World” regions. This is all the 955 

more important for our study given that such regions are often critical when it comes to biodiversity impact 956 

assessment. Sectoral precision seemed however even more important, hence our choice to use EXIOBASE 957 

3 rather than a more regionally detailed MRIO database. 958 

Although very detailed, EXIOBASE environmental extensions also suffer from limitations, not in terms of 959 

items listed but rather in terms of sectoral allocation. Indeed, some extensions like the water account only 960 

concern a limited number of industries, in this example Agriculture, Livestock breeding, Manufacturing and 961 

Electricity related industries. This causes default assessments by the GBS to endogenously ignore part of 962 

companies impacts as their contribution to some pressures will not be accounted for. This part can be 963 

material, for instance for the industry “Collection, purification and distribution of water”. This fact reinforces 964 

the need to complement IO default data by company data whenever possible. 965 

4.2 Limitations regarding the use of IO 966 

modelling in the GBS and perspectives for 967 

future developments 968 

Limitations related to the use of sectoral averages and incomplete inventories and the way these issues are 969 

dealt with within the GBS have already been presented. 970 

The first limitation of the default assessment procedure in GBS relies on a theoretical question. As explained, 971 

default assessments consist basically in 972 

1. Using turnover data to associate the company’s activity to the right industries and regions in the 973 

EXIOBASE model 974 

2. Use the data in the environmental extensions (GHG emissions, raw material consumptions…) 975 

and our in-house developed tools to deduce the biodiversity impact 976 

Step 1 is very important since it determines the accuracy of the computed value, so we want to be as close 977 

to the company’s real activity as possible. Hence, we want to get the industry(ies) and region(s) right. 978 

Companies’ annual reports often document the turnover (and not the production) split by countries/regions 979 

and by the company’s main sector of operation. The latter split can be used to split the company’s turnover 980 

between the right EXIOBASE industries, as explained in Section 2.2A. In our understanding EXIOBASE IO 981 

tables are based on sales (i.e. turnover: where were products and services sold? where are the 982 

customers?), while the environmental extensions are based on production (where were the goods and 983 
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services produced, where are the factories). As the turnover regional split – i.e. where the sales occur – 984 

may not be a good proxy for where production took place, we wonder whether using the turnover split is 985 

the best way to proceed. It came out from discussions with other developers that doing so is common, 986 

production data being much less documented. The choice made for now remains however open and we 987 

might consider changing it if future discussions advise so.   988 

Another limitation is certainly related to the date of the data. Indeed, the most recent dataset provided by 989 

EXIOBASE v.3 is for year 2011. The time gap between 2011 and 2020 (year of the first GBS full corporate 990 

and portfolios assessments) is non-negligible. It is a concern in terms of results accuracy since the structure 991 

of the economy, global prices and relative prices changed between the two periods. The preferred way to 992 

solve this issue is the update of the IO data used in GBS when EXIOBASE dataset for more recent years 993 

become available. EXIOBASE developers announced that data for the year 2016 will be released soon. The 994 

time gap arguments further in favour of the use of company specific data whenever possible. In this regard, 995 

the flexibility of GBS in terms of input data used presented in (CDC Biodiversité 2020a) and in Section 3.2 996 

of this report is thus critical and an undeniable strength of the tool. Also, a possible way to reduce the bias 997 

related to time gap that we would like to discuss with experts and explore in the future would be to 998 

translate companies’ activity data expressed in today’s currencies into 2005 euros, the unit used in 999 

EXIOBASE 3. Indeed, this translation might limit the bias related to changes in prices structure between 1000 

to two periods. 1001 

Linked to the previous point, the fine resolution of some extensions compared to EXIOBASE industry 1002 

resolution induces biases. Indeed, the material extensions related to crops are much finer than the 1003 

Cultivation industries; only wheat and rice production sectors are singled out, causing for instance all the 1004 

fruits, vegetables and nut to be produced by the same industry “Cultivation of vegetables, fruits and nuts”. 1005 

In the GBS, monetary flows are always translated into raw material flows. Thus, euros of production or 1006 

purchases are transformed into tonnes of apples and avocados for instance, and this number of tonnes is 1007 

different for the two products. Combined with the material account, the IO table thus provides a "price 1008 

vector" for all products extracted by the industry. This price vector is fixed and corresponds to the year of 1009 

the data (2011). Hence, changes in the material flows or relative prices of products extracted by an industry 1010 

cause the inventories computed through the IO model, and thus corresponding impacts, to be flawed. For 1011 

instance, if the real price of one of the items in the inventory changes, the impact computed through the IO 1012 

model would remain the same since the change is not reproduced in EXIOBASE data. Therefore, the 1013 

computed impact will be overestimated (the price increase causes less tonnes to be bought, so that the 1014 

true impact is smaller after the increase). Two options exist to overcome this limitation: replacing default 1015 

inventories computed through the IO module by real inventory data provided by the assessed companies 1016 

(refined assessment, see Section 3) and working with more recent IO data. EXIOBASE will soon release its 1017 

2016 update, which will be integrated into the GBS. In our opinion, EXIOBASE sectors provide acceptable 1018 

details of the products value chain, i.e. distinguishing raw material extraction from processing, 1019 

manufacturing, distribution, waste treatment/recycling etc. Yet, it is true that: 1020 

1. Production of/purchases to an industry will always be considered to concern all the materials 1021 
extracted by the sector (no possibility to buy only apples and no avocados);  1022 

2. Monetary flows between apple producers and avocados producers, for instance, cannot be 1023 
isolated.  1024 

Hence, we insist that IO data are simple averages, so that the use of IO modelling only provides a sectoral 1025 

benchmark and default value of a company's footprint. If a company can provide real data related to its 1026 



 

 

 

 

 39 

GBS REVIEW: INPUT-OUTPUT MODELLING 

production and purchases (for instance showing that it purchases only apples), then this data and the 1027 

related impact are used to replace the default value in the results (the default impact of the production of 1028 

avocados is set to 0). Also, the IO framework is more suited to the assessment of large companies, which 1029 

activities better match the delineation of EXIOBASE industries. As such, small and medium enterprises 1030 

(SMEs) are currently not covered by the GBS. Yet, the approach used for large companies could be applied 1031 

to SMEs. Two main questions would then need to be solved: 1/ how to attribute impacts of SMEs to capital 1032 

owners (the enterprise value and the share of enterprise value owned may be unknown)? And 2/ is the 1033 

impact sufficiently large for the GBS estimation to be reasonably accurate? The conditions required for that 1034 

are described in (CDC Biodiversité 2020e). 1035 
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